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Abstract: Traditional loss reserves models focus on the mean of the conditional loss 

distribution. If the factors driving high claims differ systematically from those 

driving medium to low claims, alternative models that differentiate such differences 

are required. We propose quantile regression model loss reserving as the model 

offers potentially  different solutions  at  distinct  quantiles  so that  the  effects of 

risk factors  are differentiated  at different points of the conditional  loss distribution. 

Due to its nonparametric nature, quantile regression is free of the model 

assumptions for traditional mean regression models, including homogeneous 

variance across risk factors and symmetric and light tails, etc. These model 

assumptions have posed a great barrier in applications as they are often not met in 

the claim data. Using two sets of run-off triangle claim data from Israel and  

Queensland, Australia, we present  the  quantile  regression approach that  illustrates  

the  sensitivity  of claim size to risk factors,  namely the  trend  pattern and  initial  

claim level, in different quantiles. Trained models are applied to predict future 

claims in the lower run-off triangle.  Findings suggest that reliance on standard loss 

reserves techniques gives rise to misleading inferences and that claim size is not 

homogeneously driven by the same risk factors across quantiles. 

 

Key words: Quantile regression, loss reserves, run-off triangle, risk heterogeneity, 

extreme outlier. 

 

1. Introduction 

An insurance company promises to pay claims to the insureds if some defined events (injury, 

accident, death, etc.) occur. However in many  cases, claims originating  in a  particular year  are  

often  settled  with  a  time  delay  of years  or  perhaps  decades. Therefore, a method to estimate 

the expected liability is needed so that the insurer can calculate the profit of written policies, and 

allocate reserved assets to ensure liquidity. Since loss reserves generally represent by far the 

largest liability, and the greatest source of financial uncertainty in an insurance company, an 

appropriate valuation of insurance liabilities including risk margin is one of the most important 
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issues for a general insurer. Risk margin is the component of the value of claims liability that 

relates to the inherent uncertainty. 

The significance of providing appropriate valuation of insurance liabilities is well un- 

derstood by the actuarial profession and has been debated by both practitioners and academic 

actuaries alike. Specifically, the aim is to develop statistical models, the loss reserve models to 

analyse loss reserves data in the format of a run-off triangle and predict future claims in the lower 

triangle.  A run-off triangle  is a matrix  where each row corresponds  to the  year of an accident  

(the  so-called policy/accident  year),  and each column corresponds  to the  number  of years 

between the  accident  year, and the year in which the claim was made (the so-called 

development/lag year).  Let 𝑌𝑖,𝑗  denote the value of claims paid by an insurance company in 

policy year i, and settled after  𝑗 −  1  years (or lag year j).  The observation 𝑌𝑖,𝑗 , 𝑖 =

 1, . . . , 𝑛;  𝑗 ≤  𝑛 –  𝑖 +  1, over a period of n policy years can be presented  by a run-off triangle  

in Figure 1. 

 
Figure 1: Run-off triangle for loss reserves data 

Using the  𝑇𝑢  =  𝑛(𝑛 +  1)/2  observed claims in the upper triangle,  we aim to predict the 

𝑇𝑙  =  𝑛(𝑛 −  1)/2 future  claims in the lower triangle. The values in each diagonal correspond 

to claims in one single calendar year. 

There  have been several approaches  considered  which range from those  that  involve little  

analysis of the underlying  claim portfolio to those that  involve significant analysis of the  

uncertainty using a wide range of information  and  techniques,  including sophisticated stochastic  

models (Taylor  [22] and  Klugman  [12]).  Traditional models using the generalized linear model 

approach  (de Jone and Heller [8]) in the stochastic framework are based on loss distributions 

which are estimated using historical data and the claims liability is evaluated using central 

estimate which is typically defined as the expected value over the entire loss distribution.  

However these models have implicit assumptions of risk homogeneity which refers to 

homogeneous loss distribution across risk factors and absence of catastrophic losses. With the 

inherent uncertainty that may arise, the mean estimator is not statistically robust and therefore 

sensitive to outlier claims. Hence claims liability measures often differ from their central 

estimates. 
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In practice, the approach adopted is typically to then set an insurance provision so that, to a 

specified probability say 75%, the provision will eventually be sufficient to cover the run-off 

claims.  When this margin is then added to the central estimate, it should provide a reasonable 

valuation of claims liability and therefore increases the likelihood of providing sufficient 

provision to meet the claims liability. Moreover actuaries are more concerned with high claims 

due to their possibly adverse impact on the insurance fund.  In this  regard,  it is worth  noting  

that  the  more volatile a portfolios runoffs or those  that  display  heavy tailed  features  may 

require  a higher risk margin,  since the potential  for large swings in reserves is greater  than  that 

of a more stable portfolio. 

To address these issues, percentile or quantile methods is most prevalent in practice and this 

provides a good foundation or the quantile regression models we consider. The quantile 

regression is proposed by Koenker and Bassett [13] and popularized, in part, by Buchinsky [4] 

and Koenker and Hallock [14] for the advancement of loss reserves methodology. The quantile 

of a distribution for a random variable Y is defined as 𝑦𝜏   =  𝑖𝑛𝑓 {𝑦 ∶  𝐹𝑌(𝑦)  ≥  𝜏 } where 1 −

 𝜏 is the probability of ruin in actuarial studies.  

The quantile regression model has several advantages over the traditional loss reserves 

models.   Firstly, it differentiates risk factors that drive high level claims from those which drive 

low level claims.  It is, therefore,  possible to determine  if loses are homogeneously driven by 

the same determinants and to distinguish  risk factors impacting resolution  costs  of expensive  

loses from  the  factors  impacting  less expensive  loses. Hence quantile regression loss reserve 

models analyse risk factors at all points of the distribution particularly the upper tails for 

expensive loses instead of purely the center. 

Secondly, quantile regression is free from some disadvantages of the traditional models: 

omitted variables bias, heteroskedasticity and non-normal error distributions, all of which prevail 

in the loss reserves data.  Omitted variables bias refers to the bias in the outcome variable when 

there are many other unmeasured factors that are not included in the mean of data distribution.  

Hence the  outcomes  cannot  change by more than some upper  limit  set by the  measured  factors,  

but may change by less when other unmeasured  factors are limiting  (Cade  and Noon [5]). In 

loss reserves model, failure to include all relevant variables often occurs because of insufficient 

knowledge of the many underlying risk factors that drive the claim process or the inability to 

measure all relevant processes.  This is particularly the case when aggregate instead of individual 

claims are modelled. This omitted variables bias are allowed for in different levels of quantile 

regression. 

Thirdly, quantile regression requires no specification of how variance changes are linked to 

the mean and hence it can be applied to model heterogeneous variation in loss distribution. In 

loss reserves model, heteroskedasticity caused by extreme claims often results in inflated 

variance estimates, leading to contaminated parameter estimates in the mean of the loss 

distribution.   In quantile regression, effects of outliers appear only in the higher quantiles on the 

two ends as they adopt heavier weights only in the loss function of higher quantile.  Thus, quantile 

regression is robust to the presence of outliers. 
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Lastly, most traditional models assume Gaussian errors within the generalized linear model 

framework. Others consider errors in the exponential family. Chan, Choy and Makov [7] 

proposed the generalized-t (GT) distribution which contains several important families of 

distributions including the Student-t, exponential power and uniform distributions for the log of 

claim sizes. However they remarked that as the log-linear model is more sensitive to low values 

than large values, the residuals in the empirical study are negatively skewed and that one should 

consider some skewed error distributions. While the GT distribution is sophisticated and general 

but still inappropriate to allow for skewed errors  after  logarithmic  transformation, the  quantile  

regression is perhaps  a simple and  yet  more efficient alternative when the  error  distribution is 

nonnormal (Buchinsky,1998) as the quantile  regression avoids  this  distribution  assumption  

altogether. In summary, quantile regression provides a way of understanding and testing how the 

relationships between claims and other risk factors change across the distribution of conditional 

claims and it avoids the distribution assumptions in mean regression. 

Although  the  median  and  quantile  regression have  not  been  used  as extensively  as the  

mean regression, using the  ordinary  least  square  (OLS) method  in particular, in the empirical 

literature, quantile  regression has been applied in diverse fields including Buchinsky [2] , [3], [4] 

on labor economics, Eide and Showalter [9] on earnings mobility, Cade and Noon [5] and Cade,  

Terrell and Schroeder [6] on ecology and Eide and Showalter (1998) on education,  etc. Financial 

applications include Barnes and Hughes [1] and Engle and Manganelli [10] in Value at Risk 

estimation.  Quantile regression in insurance applications can be found in Portnoy [21] for the 

graduation of mortality table rates, Pitt [20] for the claim termination rates for income protection 

insurance and Kudryavtsev [19] for rate-making in heterogeneous insurance portfolios.  However 

none of these works focus on loss reserve models for run-off triangle using the trend of claims to 

predict future claims.  This paper aims to pioneer the application in this area. 

The paper is organized as follows. In Section 2, the theory of quantile regression is presented. 

Section 3 describes two empirical examples in which quantile regression is applied to the loss 

reserves data presented in a run-off triangle. Trends of loss across lag years are identified at 

different quantile levels.  Section 4 predicts future claims using the trained models and assesses 

the predicted total future claims by comparison with those using the chain ladder (CL) method 

and the model of Chan, Choy and Makov [7] with GT distribution. Lastly, Section 5 concludes 

the merits of quantile regression in loss reserves model and suggests future development for the 

model. 

 

2. Quantile regression 

Most regression models focus on estimating the mean of the data distribution as some 

functions of predictor variables. Focusing entirely on changes in the mean may, however, fail to 

identify and distinguish real relationships between variables in heterogeneous distribution. This 

is particularly problematic for regression models with heterogeneous variances, which are 

common in finance and insurance. A regression model with heterogeneous variance implies that 

there is not a single rate of change that characterizes changes in the data distribution. 
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Quantile regression, developed by Koenker and Bassett [13], is an extension of the OLS 

estimation of the conditional mean to a collection of models with different conditional quantile 

functions. As the median regression estimator minimizes the symmetrically weighted sum of 

absolute errors (where the weight equals to 0.5) to estimate the conditional median function, other 

conditional quantile functions are estimated by minimizing an asymmetrically weighted sum of 

absolute errors, where the weights are functions of the quantile of interest.  Suppose we have a 

model 

𝑌𝑖 = 𝑥𝑖𝛽 + 𝜖𝑖 

where β is an unknown 𝑝 × 1 vector of regression parameters, 𝑥𝑖   is a 𝑝 × 1vector of predictors,  

𝑌𝑖  is the outcome variable and  𝜖𝑖  is an unknown error term. Ordinary regression minimizes 

∑ 𝜖𝑖
2

𝑖  whereas median regression minimizes ∑ |𝜖𝑖|𝑖 .  Koenker and Basset [13] ‘tilted’ the absolute 

function called the loss or check or tilt function 

𝜌𝜏(𝜖𝑖 )  =  𝜖𝑖(𝜏 −  𝐼 (  𝜖𝑖 <  0))                                      (1) 

to produce the 𝜏𝑡ℎ (𝜏 ∈ (0, 1)) conditional quantile of 𝑌𝑖 given 𝑥𝑖 

𝑄𝜏 (𝑦𝑖| 𝑥𝑖)  =  𝑥𝑖𝛽𝜏,                                                      (2) 

where 𝛽𝜏 minimises 

 ∑ 𝜌𝜏 (𝑦𝑖  −  𝑥𝑖𝛽)𝑖                                                         (3)                                 

Note that 0.5∑ |𝜖𝑖 | 𝑖 = ∑ 𝜖𝑖(0.5 −  𝐼 (𝜖 𝑖 <  0))𝑖  for median regression. The loss function in 

(1) can be written as 

𝜌𝜏(𝜖𝑖) =  𝜖𝑖 [(𝜏 − 1)𝐼(𝜖𝑖 < 0) + 𝜏𝐼(𝜖𝑖 ≥ 0)], 

showing that the weights are symmetric for the median regression (τ = 0.5) and asymmetric 

otherwise. Their plots are given in Figure 2 for various quantile levels τ as well as for the OLS 

regression. 
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Figure 2:  Loss functions for mean, median and quantile (𝜏 = 0.75, 0.9, 0.95, 0.975) regressions. 

 

The minimization of (3) can be performed using the R package quanreg 

 

library(quantreg) 

rq(y~x,tau=taus,method="br") 

 

contrinbuted by Koenker where taus is a vector of quantile  levels 𝜏 and "br" is the default  

method of estimation  called the  Simplex method  which is the  modified version of the  Barrodale  

and Roberts algorithm described in Koenker and  d’Orey [13], [18]. This method is recommended 

for moderate sized problems (n < 5, 000 and p < 20 where p is the number of parameters in the 

model). It is advantagous to use the Frisch-Newton interior point method "fn" for larger problems 

and the FrischNewton approach with preprocessing "pfn" (Koenker and Portnoy [16]) for very 

large problems. Official releases of R and the install package of quantreg are available at 

http://lib.stat.cmu.edu/R/CRAN/. See R documentation for other options in quantreg. 

In quantile regression, the conditional distribution of Y given 𝑥 is traced across levels of 𝜏 

with 𝛽𝜏  estimated in (3) using different values of 𝜏 . Hence the model permits parameter 

heterogeneity across levels of claim as described by the quantile point 𝜏. In the quantile plot of β̂𝜏  

against, a significant  variation  of  �̂�𝜏 implies that  the effect of 𝑥𝑖 changes as the level of claim 

increases. Note that all observations are used to estimate the quantile regression parameters and 

there is no partitioning of data performed on the outcome variable as this would incur sample 

selection bias. 
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Although many papers on quantile regression assume that the errors are independently and 

identically distributed (i.i.d.), the only necessary assumption concerning   𝜖𝑖 is 

𝑄𝜏 = (𝜖𝑖  |𝑥𝑖) = 0 

that is, the 𝜏-th conditional  quantile  of the error term  equals to zero. Hence the estimates  

�̂�𝜏  are nonparametric in the sense that no parametric distribution is assumed for ϵ𝑖. The quantile 

regression estimates in (2) are an ascending sequence of surfaces that are above an increasing 

proportion of sample observations with increasing quantile levels 𝜏.  This operational 

characteristic extends the concepts of quantiles, order statistics, and rankings to the linear model 

(Gutenbrunner, Jurecková, Koenker and Portnoy [11]; Koenker and Machado [15]). Quantile 

regression retains its statistical properties under any linear or nonlinear monotonic transformation 

of Y as a consequence of this ordering property (Koenker and Machado [15]). Thus it is possible 

to use a nonlinear transformation, e.g. logarithmic transformation, to estimate linear regression 

quantiles and then transform back the estimates to the original scale without any loss of 

information. Moreover parameter estimates 𝛽𝜏 have an asymptotic normal distribution 

√𝑛(�̂�𝜏 − 𝛽𝜏)
𝑑
→  𝑁(0, 𝛴𝜏), 

so tests can be constructed using critical values from the normal distribution (Barnes and Hughes 

[1]). 

 

3. Expirical Example 

To demonstrate the application of quantile regression in modelling loss reserves, two loss 

reserves data sets, from Israel and Queensland, Australia respectively, are analyzed. Some 

general trends are obvious in both data. Given a policy period  (year  for the Israel data and 

quarter  for the Queensland data),  the amount of claims paid follows an increasing trend  to a 

certain  lag period and then  a decreasing trend  thereafter.Table1 reports  the means of claim 

over policy periods for both  data  and they demonstrate this trend  pattern with a peak at the 4-

th and 9-th lag period respectively. 
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Table 1: Average claim across lag year for the loss reserves data from Israel and Queensland, Australia. 

 
On the other hand, there are no obvious trends across policy periods for each lag period. As 

the level of claim is positive continuous, a logarithm transformation is employed and such 

transformation will not affect the accuracy of quantile regression. To model the trend pattern of 

claims across lag-period, we include in the linear function of risk factors the first and second 

order effects of lag-period and the standardized log initial level of claims or exposure z𝑖𝑗 since 

the exposure for each policy period affects the levels of claim through out the lag-periods.  As a 

result, the model for the loss reserves data is 

𝑄𝜏 (𝑙𝑛 𝑦𝑖𝑗 |𝑧𝑖𝑗) = 𝛽
𝜏0

+ 𝛽
𝜏1  ×  𝑗 + 𝛽

𝜏2  ×  𝑗2 + 𝛽
𝜏3  × 𝑧𝑖𝑗 ,              (4) 

where the quantile levels are chosen to include 𝜏 = 0.025, 0.05, 0.1, 0.25, 0.75, 0.9, 0.95, 0.99 

apart from the median 𝜏 = 0.5. This set of quantile levels is adopted in the analyses of both loss 

reserves data. 

For  model comparison,  three  criteria,  namely the  root  mean  squared  error (RMSE), sum 

of weighted residuals (SWR) and percentage  total  (PT), defined as: 

RMSE = [
1

n
∑ ∑ (𝑦𝑖𝑗 − �̂�𝑖𝑗)

2
𝑛−𝑖+1

𝑗=1

𝑛

𝑖=1

]

1
2

, 
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𝑆𝑊𝑅 =
1

n
∑ ∑ 𝜌𝜏(𝑦𝑖𝑗 − �̂�𝑖𝑗),

𝑛−𝑖+1

𝑗=1

𝑛

𝑖=1

 

𝑃𝑇 =
∑ ∑ �̂�𝑖𝑗

𝑛−𝑖+1
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑦𝑖𝑗
𝑛−𝑖+1
𝑗=1

𝑛
𝑖=1

× 100%, 

are proposed. They measure the model-fit with respect to observations, model-fit with respect to 

asymmetrically weighted loss function (1) and prediction accuracy by comparing predicted totals 

with observed totals based on the upper triangle respectively. We note that SWR is only defined 

for quantile regression models using (1) and model with RT closest to 100 and RMSE and/or SWR 

the smallest is preferred. 

 

3.1  Loss  reserves data for  Israel 

The data are the amount of claims paid to the insureds of an insurance company in Israel 

during the period of 1978 to 1995 (n = 18 years).  The upper triangle has N = 171 observations 

and the 153 observations in lower triangle are to be estimated. For mathematical convenience, 

two zero claims are replaced by 0.01. This data set, as reported in the upper-triangle of Table 2, 

has been analyzed in Chan, Choy and Makov (2008). There are two  extremely  large claims, 

amount  to 11,920 and  15,546 dollars, in the 7-th lag year of policy year 1984 and in the  4-th 

lag year of policy year 1992, respectively.  They are outliers as their neighboring claims are much 

lower in magnitude. These outliers distort the general trend patterns in the data and inflate the 

standard errors of the model parameters leading to ravaged estimates for loss reserving. These  

 

Table 2: Observed and predicted claims in the run-off triangle using 0.75 quantile level for the Israel 

loss reserves data. 
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two outliers can be seen in Figure 3 which plots the trend of claims and their means in Table 1 

across lag-year.  For robustness consideration, Chan, Choy and Makov [7] suggested using the 

GT distribution which includes both platykurtic and leptokurtic distributions to accommodate 

these irregular claims. 

 
Figure 3: Claim across lag period for the loss reserves data from Israel. 

 

Figure 3 further shows that the claim payments for each policy year follows two distinct 

increasing-then-decreasing trend patterns: during 1978 to 1983, the trend increases to a high peak 

at approximately the 4-th lag year and then decreases thereafter whereas during 1984 to 1995, 

the trend increases slowly to a lower peak at about the 6-th lag year and then decreases. Hence 

Chan, Choy and Makov [7] further proposed a threshold model to incorporate a model shift after 

1983 and a state space model to account for the interaction between the policy-year and lag-year 

effects. The proposed threshold state space model with GT errors (called GT model) was 

implemented using Bayesian approach. They demonstrated that the GT model out-performed the 

popular chain-ladder (CL) model in model-fit for claims in the upper run-off triangle. Refer to 

Section 6.4 of Chan, Choy and Makov [7] for details of the CL model. Although the data are not 

adjusted for inflation, it successfully demonstrates the ability of GT model to capture various 

sources of variability. We propose modelling the data using quantile regression. Resultant 

regression quantiles are graphed in Figure 4 (a) and (b) for the log claim and claim respectively. 
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Figure 4: Quantile regression lines for (a) the logarithm of claims, ln 𝑌𝑖𝑗 , and (b) claims, 𝑌𝑖𝑗  , for Israel 

loss reserves data. 
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The quantiles for log claim show less variation in higher level claims and more variation in 

lower level claims showing a phenomenon of concern when logarithmic transformation is taken. 

The asymmetric variance violates the constant variance assumption in the mean regression model, 

in particular the GT model, but such assumption is not required in quantile regression, an 

advantage of employing quantile regression over mean regression for modelling loss reserves 

data. Moreover the two zero outliers shift the error distribution to negatively skewed which 

violates the GT error assumption in the GT model. On the other hand, they affect only the lower 

quantiles in quantile regression and such effect disappears after taking exponential transformation, 

demonstrating another advantage of using quantile regression. Some quantiles cross over in 

Figure 4(a) and the crossover effect becomes more apparent in Figure 4(b) after taking 

exponential transformation. Now the quantiles for larger claims show more variation and such 

variation gradually disappears across lag-year when the level of claims drops to zero. Moreover 

the smaller gaps between lower quantiles and wider gaps between higher quantiles show that the 

conditional distribution of claims is heavily skewed to the right, that is, the risk of expensive 

losses is likely to be higher during the early lag-years. To maintain solvency and prevent the risk 

of bankruptcy for a company, perhaps insurers should achieve a higher level of risk protection 

by reserving fund at the quantile level 𝜏=0.75 instead of at the mean in Chan,Choy and Makov 

[7]. 

 

3.2   Loss reserves data for Queensland, Australia 

The data are the amount of total incurred cost for the compulsory third party (CTP) policies 

in Queensland, Australia. Observed figures are defined as case estimates plus payment to date 

for each claim. All values have been inflated to December 2008 dollars. The data is summarized 

by policy quarters (instead of year) and development/lag quarters in the upper triangle of Table 

3. Since there is one major legislative change in December 2002, the data start from 2002 onward 

to avoid the influence of legislative change. Covering the period of December 2002 to June 2008, 

the data contain 23 quarters and 276 observations. The aim of the analysis is to predict the 253 

future claims in the lower run-off triangle. 

The plot of aggregated claims across lag-quarter for each policy quarter is shown in Figure 

5. The plot shows that during the first period of Dec 2002 to Jun 2003, trend rises up very fast to 

a high peak at about the 4-th lag quarter and levels off till the 12-th lag quarter before it drops, 

during the second period of Sept 2003 to Sept 2005, the trend shows a more gentle increase to a 

lower peak at approximately the 10-th lag quarter and then a decrease whereas during the last 

period of Dec 2005 to Jun 2008, the trend rises up faster again till the 7-th lag quarter and then 

declines thereafter. There is no obvious outliers in the data to distort the trend patterns. 

Regression quantiles are plotted in Figures 6(a) and (b) for the log claim and claim respectively. 
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Figure 5: Claim across lag period for the loss reserves data from Queensland, Australia. 
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Figure 6: Quantile regression lines for (a) the logarithm of claims, ln𝑌𝑖𝑗 , and (b) claims, 𝑌𝑖𝑗 , for Queensland, 

Australia loss reserves data 
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After taking logarithm transformation of the data, heterogeneous variance is again observed 

in Figure 6(a), particularly due to the two extremely low outliers in the 1st lag quarter. While 

they deflate the mean more, they affect only the lower quantiles. After transforming back, the 

two outliers are no longer extreme while all other lag-one observations are closely located in the 

lower quantiles. There is no crossover in both Figures 6(a) and (b) but the trend of mean is very 

different from that of median: it rises from a lower level at a faster rate to reach a higher peak 

and then decreases at a faster rate. These two distinct trend patterns, giving very different claim 

predictions, are caused by the two extreme low outliers in the first lag quarter, high outliers 

around the 6-th to 11-th lag quarters and low outliers again around the 12-th to 14-th lag quarters, 

leading to steeper trends than the median which are more robust to outliers. Regression quantiles 

are now spacing more even on the two sides of the median so that the conditional loss distribution 

is about symmetric. Forecast using quantile level 𝜏 = 0.75 is described in the next section. 

 

4. Forecast  

The aim of the analyses is to forecast future claims in the lower triangle of the loss reserves 

data using (4) and the 75% regression quantile. The parameter estimates are given in Tables 4 

and 5 for the two loss reserves data. Forecasts of loss reserves are given in the lower triangle of 

Tables 2 and 3. 

Entries in the first diagonal of the lower triangle (highlighted in dark yellow in Table 2 for 

illustration) are the one-period ahead forecasts over all policy periods and its total is the amount 

of reserves insurers to pay for the claims in one period time. Similarly, the second diagonal total 

gives the reserves for the second period in the future using the two-period ahead forecast and 

hence the sum of all diagonal totals or all entries in the lower triangle gives the total reserves for 

the future (n − 1) periods using the (n − 1)-period ahead forecast. Tables 6 and 7 report the 

diagonal totals and their sum across levels of upper quantiles as well as those using the mean and 

median regressions for the two data sets. 
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Table 4: Parameter estimates and their s.e. (in italic) for the Israel loss reserve data. 

 
 

Table 5: Parameter estimates and their s.e. (in italic) for the Queensland, Australia loss reserve data. 
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Table 6: Estimates of loss reserve at diagonals of lower triangle and their total for the Israel loss reserve 

data 
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Table 7: Estimates of loss reserve at diagonals of lower triangle and their total for the Queensland, 

Australia loss reserve data. 

 

4.1  Loss reserves data for Israel 

The parameter estimates as reported in Table 4 and their confidence intervals (CIs) across 

quantile levels τ are graphed in Figure 7. 
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Figure 7: Parameter estimates and their 95% confidence intervals across quantiles for Israel loss reserves 

data. 

 

The CIs for 𝛽0, 𝛽1 and 𝛽2 are very sharp showing high levels of significance except for the 

very low quantiles and they change in sign and magnitude across quantile levels τ. Koenker [18] 

remarked that the endpoints of the CIs are not always symmetric about the estimate because of 

the skewed sampling distribution of the estimates especially for smaller sample and more extreme 

quantiles. In this case, the sampling variation for the quantiles can change rapidly over a short 

interval of quantiles. As �̂�1 and �̂�2 describe the trend of claims across lag-years, their distinct 

estimates on different quantile levels trace a gradual change in trend pattern from a higher peak 

(𝑦𝑝) at earlier lag-year (𝑥𝑝) to a lower peak at later lag-year as the quantile level decreases. The 

coordinates of the peak (𝑥𝑝, 𝑦𝑝) are reported in Table 4. This result is supported by the data plot 

in Figure 3, agrees with the result of the sophisticated GT model but is achieved by a single 

quantile regression model. Lastly 𝛽3which measures the effects of initial claim levels or exposure 

on claim sizes, has positive but insignificant effects over nearly all quantile levels. Despite 

insignificant, it shows intuitively how the later levels of claim depend on the initial claim size 

just after policies were made. 

The model performance measures RMSE, SWR and PT are reported in Table 2. The 

corresponding RMSE and PT values for model using GT distribution are (1258.7, 97.62) and for 

model using CL method are (1976.9, 97.71) respectively. Being the most sophisticated model, 
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the GT model provides the best model-fit according to RMSE. Both the GT and CL models 

perform the best in terms of PT whereas the median regression model is preferred among all 

quantile regression models. However all the three models give underestimation of total claims in 

the upper triangle. We note that the 75% quantile regression model performs slightly less 

satisfactory which can be explained in Figure 8 by the mild overestimates for low claims and 

underestimates for high claims. 

 
Figure 8: Predicted claim again observed claim in the upper triangle for Israel loss reserves data. 

 

While over- and underestimations are expected  using higher quantile levels, the 75% 

quantile regression model gives a slight overestimate of overall total in the upper triangle as 

compared  to the GT, CL and median regression models which give under- estimates. The slight 

overestimate is perhaps a realistic level of loss reserve fund for insurers to maintain solvency. 

Lastly the 97.5% quantile regression model provides the most minimization of the asymmetric 

loss function (1).  Figure 9 plots the residuals of quantile regression model across quantile level 

τ. It can be seen that the distribution changes from right-skewed to left-skewed on increasing τ. 



 

148  Predicting loss reserves using quantile regression Running title: Quantile regression loss reserve models 

 

 
Figure 9: Residuals in the upper triangle of quantile regression models across quantile levels τ for Israel 

loss reserves data. 

 

Predicted i-year ahead claim totals (𝑖 = 1, . . . , 𝑛 − 1) using the mean, median and (upper) 

quantile regressions and their overall totals across quantile levels are reported in Table 6 and 

graphed in Figure 10(a). 
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Figure 10: Prediction of diagonal totals in the lower triangle for (a) Israel and (b) Queens- land, Australia 

loss reserves data. 
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The level of reserves increases with increasing quantile level τ and decreasing i-th lag year 

diagonal in the lower triangle, but the gaps between the mean, median and successive pairs of 

quantiles are substantial showing that prediction using the mean may underestimate the level of 

loss reserves resulting in sufficient fund reserved for future claims. Chan, Choy and Makov [7] 

predicted the total outstanding claims in the lower triangle to be 296,159 dollars with a standard 

error of 123,867 dollars. Our projected totals using a simple mean regression and 75% quantile 

regression are 187,493 dollars and 299,988 dollars respectively, with the latter being similar to 

the projected total using the GT model. 

 

4.2   Loss reserves data for Queensland 

Again, the parameter estimates are reported in Table 5 and their CIs across quantile levels τ 

are graphed in Figure 11. 

 
Figure 11: Parameter estimates and their 95% confidence intervals across quantiles for Queensland loss 

reserves data. 
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Trends of CIs across τ are similar to those using Israel loss reserves data but the CIs are more 

sharp except for very low quantiles. Now the exposure effect is more significant, indicating that 

higher level of exposure is associated with larger claim throughout the lag-quarters. Trends of 

regression quantiles in Figure 6(b) again follow the pattern that higher peak occurs at earlier lag-

quarter and lower peak at latter lag-quarter as the quantile level decreases. Table 5 shows that the 

median regression and 75% quantile regression are the first and second best models according to 

RMSE. While the former model gives an underestimate of total claim in the upper triangle 

according to PT but the latter model gives an overestimate of only 11% above the actual total, 

the latter model is chosen to forecast future claims for solvency consideration. The model 

suggests that 15,040,954,802 dollars should be saved for the future 22 quarters (5.5 years). 

Predicted i-period ahead claim totals (𝑖 = 1, . . . , 𝑛 − 1) using the mean, median and (upper) 

quantile regression and their overall totals across quantile levels are reported in Table 7 and 

graphed in Figure 10(b). The median and quantile lines show similar decreasing trends as in 

Figure 10(a) for Israel data. However the mean regression line crosses over some quantiles 

showing that the predicted diagonal totals using the mean regression will not be seriously 

underestimated. Again, SWR shows that the 97.5% quantile regression model provides the most 

minimization of (1) and Figure 12 which plots the residual distributions among different quantile 

regression models shows the change of shape from right-skewed to left-skewed on increasing 

quantile level τ. 
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Figure 12: Residuals in the upper triangle of quantile regression models across quantile levels τ for 

Queensland loss reserves data. 

 

5. Conclusion 

As insurers receive premiums from policyholders in advance to pay for the future claims on 

losses specified in insurance contracts in return, they must have the necessary loss reserves to 

pay for these outstanding claims and settlement costs incurred. To provide sufficient reserves for 

outstanding claims, prediction of over-claimed is more important and hence the focus of loss 

reserves model lies more on the upper tails of the conditional distribution of claims. This paper 

makes a pioneering attempt to model loss reserves data using quantile regression because it 

provides a more complete view of the causal relationships between risk factors and claim levels 

in loss reserving. The model is applied to two loss reserves data and results illustrate that the 

claim levels in different quantiles show significantly different trend patterns across lag-period 

and different sensitivities to initial claim level or exposure. 
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Quantile regression model is further demonstrated and compared to the GT model in Chan, 

Choy and Makov [7] using an Israel loss reserves data. Results show that quantile regression 

model can capture some characteristics in the data that the sophisticated GT model has targeted 

for, namely the skewed error distribution due to logarithmic transformation, the shift of trend 

pattern for claims after a threshold pol- icy year and the extreme large and small claims. These 

characteristics are all allowed for in quantile regression, partly due to its nonparametric nature 

which avoids some model assumptions in the parametric mean regression. Forecast of total 

claims using a quantile level of τ = 0.75 is similar to the forecast using GT model. For practicing 

actuaries, the idea of using a sophisticated model is less attractive. This is reflected by the fact 

that most actuaries use solely the CL model and rarely attempt any other models. Although the 

performance of quantile regression model is less satisfactory than the GT model for in-sample 

model-fit, the former model provides a slight overestimate of total claims whereas the latter an 

underestimate which is less desirable because it will weaken the solvency for an insurance 

company and increase the risk of bankruptcy. Another practical advantage of quantile regression 

is that it can be easily implemented using the quantreg package in R. In conclusion, quantile 

regression model offers an attractive methodological advancement in forecasting loss reserves. 
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